

DISCIPLINA: CÁLCULO II CÓDIGO: 2DB014

VALIDADE: Início: **01/2013** Término:

Eixo: Matemática

Carga Horária: Total: **75 horas/ 90 horas-aula** Semanal: **6 aulas** Créditos: **6**

Modalidade: **Teórica** Integralização:

Classificação do Conteúdo pelas DCN: Básica

Ementa:

Funções reais de várias variáveis: limites, continuidade, gráficos, níveis; derivadas parciais: conceito, cálculo, e aplicações; coordenadas polares cilíndricas e esféricas: elementos de área e volume; integrais duplas e triplas em coordenadas cartesianas e polares: conceito, cálculo, mudanças de coordenadas e aplicações; campos vetoriais; gradiente, divergência e rotacional; integrais curvilíneas e de superfície; teoremas integrais: Green, Gauss e Stokes.

Curso(s)	Período
Engenharia de Computação	2º
Engenharia Elétrica	2º
Engenharia Mecânica	2º
Engenharia de Materiais	2⁰

Departamento/Coordenação: Departamento de Física e Matemática - DFM

INTERDISCIPLINARIDADES

Pré-requisitos
Cálculo I
Geometria Analítica e Álgebra Vetorial
Co-requisitos

Disciplinas para as quais é pré-requisito / co-requisito
Cálculo III (pré-requisito)
Física II (co-requisito)
Álgebra Linear (pré-requisito)
Estatística (Eng. Mecânica, Eng. Elétrica, Eng. de Materiais)
Estática (Eng. Mecânica, Eng. de Materiais)
Outras inter-relações desejáveis
Física I
Física III
Eletromagnetismo (Eng. Elétrica)
Mecânica dos Fluidos (Eng. Mecânica)
Termodinâmica (Eng. Mecânica)
Fenômenos de Transporte (Eng. de Materiais)

Obje	Objetivos: A disciplina deverá possibilitar ao estudante				
1	Esboçar gráficos de funções simples de duas variáveis, manualmente ou por computador.				
2	Esboçar gráficos de curvas em coordenadas polares, calculando suas áreas.				
3	Calcular derivadas parciais e derivadas direcionais e utilizá-las em aplicações.				
4	Calcular integrais duplas, com uso de coordenadas cartesianas e polares.				
5 Calcular integrais triplas, com uso de coordenadas cartesianas, cilíndricas e e					
6	Mudar de coordenadas em integrais duplas e triplas.				

	j
7	Calcular integrais de caminho e de superfície.
8	Relacionar integrais de caminho e de superfície com integrais duplas ou triplas, com uso dos teoremas integrais.
9	Usar todos os tipos de integrais no cálculo de áreas, volumes, momentos, centróides.
10	Perceber que o Cálculo é instrumento indispensável para a aplicação em trabalho atuais em diversos campos.
11	Ter consciência da importância do Cálculo Diferencial e Integral como base para a continuidade de seus estudos.
12	Aptidão para reconhecer e equacionar problemas práticos que sejam representados por integrais de linha e superfície.

Unidades de ensino		Carga-horária
		(horas-aula)
1	FUNÇÕES DE VÁRIAS VARIÁVEIS	32
	Conceito, gráfico, curvas de nível.	
	Gráficos, superfícies de nível. Superfícies quádricas e cilíndricas.	
	Limites e continuidade. Derivada parcial.	
	Derivadas de maior ordem. Plano tangente.	
	Aproximação Linear. Diferenciabilidade. Regra da cadeia.	
	Derivada implícita. Derivada direcional, vetor gradiente. Reta normal.	
	Máximos e mínimos. Pontos críticos.	
	Problemas de otimização.	
	Máximos e mínimos com vínculos. Método de Lagrange.	
2	INTEGRAIS MÚLTIPLAS	30
	Integral dupla e repetida.	
	Aplicações da integral dupla. Volumes. Valor médio. Centróide.	

	CONSELHO DE GNADUAÇÃO	
	Centro de massa.	
	Integral dupla em coordenadas polares. Aplicações.	
	Integral tripla. Cálculo como integral repetida. Momento de inércia.	
	Coordenadas cilíndricas e esféricas. Integral tripla nestas coordenadas.	
	Centróide. Centro de massa. Momento de inércia.	
	Mudança de variável em integrais duplas e triplas. Jacobiano.	
3	INTEGRAIS CURVILÍNEAS E DE SUPERFÍCIE	12
	Parametrização de curvas e integrais de linha.	
	Comprimento de arco.	
	Independência de caminhos.	
	Operadores diferenciais: gradiente, divergente, rotacional e suas propriedades.	
	Funções potenciais, campos conservativos.	
	Parametrização de superfícies e vetor normal. Integrais de superfícies. Área de Superfície.	
	Cálculo de Integrais de superfícies.	
4	TEOREMAS INTEGRAIS	16
	Teorema de Green no plano	
	Teorema de Gauss	
	Teorema de Stokes	
	Caracterização de campos conservativos	
	Aplicações diversas	
	Total	90

				-
Rib	lioara	ıfia	Rás	sica.

1	THOMAS, George B. Cálculo . 11. ed. São Paulo: Pearson, 2008. v. 2.
2	STEWART, J. Cálculo , 5. ed., São Paulo: Thomson Learning, 2006. v. 2.
3	EDWARDS, C. H.; PENNEY, D. E. Cálculo com Geometria Analítica . Rio de Janeiro: Prentice-Hall, 1994. v. 2 e 3.

Bibl	iografia Complementar
1	ANTON, H.; BIVENS, I.; DAVIS, S. Cálculo. 8. ed. Porto Alegre: Bookman, 2007. v. 2.
2	SIMMONS, G. Cálculo com geometria analítica . 1. ed. São Paulo: McGraw-Hill, 1988. v. 2.
3	SWOKOWSKI, E. W. Cálculo com geometria analítica . 2. ed. São Paulo: Makron Books, 1995. v. 2.
4	FLEMMING, D.M.; GONÇALVES, M. B. Cálculo B : funções de várias variáveis, integrais duplas e triplas . São Paulo: Prentice-Hall, 2007.
5	FLEMMING, D.M.; GONÇALVES, M. B. Cálculo C : funções vetoriais, integrais curvilíneas, integrais de superfície. São Paulo: Prentice-Hall, 2007.